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Abstract ‘Resonating-valence-bnn~ (RVB) variational wavefunctions are numerically 
investigated in order to describe the gmund state and the singlet low-lying excited states of 
the spin-1/2, 3,-J2 Heisenberg antiferromagnet with 118 5 h l J i  5 I on triangular lattices of 
N = 4 p  sites compatible with the classical NQI orders. Comparison with previous exact 
diagonaliwrion resulfs indicates that che singlet eigenswes associated with collinear N&l 
order. among which the ground state is found. can be accurately described with appropriate 
superpositions of two-sublattice RVB trial states, while the other singlet low-lying eigenstates 
associated with four-sublattice N&l order c ~ n  be well npproximted from the four-sublattice 
RVB trial states. 

The spin-I/Z, 51-52 Heisenberg antiferromagnet on the triangular lattice has attracted 
attention, in particular, since quantum fluctuations could lift the degeneracy of the classical 
ground-state manifold, selecting a specific order t1-51. This Hamiltonian reads 

where 3, and J2 = 0rJl are positive and the first and second sums respectively run over 
the first and second neighbours. In the classical limit (S -+ CO), its ground state is, when 
1/8 c a c 1, a degenerate continuous manifold of four-sublattice NCel states (figure I ) .  
The selection by quantum fluctuations of a two-sublattice collinear NCel state (figure I )  in 
this manifold of four-sublattice NCel states was first suggested from spin-wave calculations 
[I-31 and has recently received strong support from the exact diagonalization calculations of 
kcheminant et al [5] on finite spin-l/2 systems. Analysing the symmetry properties of the 
eigenstates, these authors identified the set of eigenstates (41?) which enable one to construct 
any four-sublattice NCel state, and showed that the eigenstates with the lowest energies for 
every value of the total spin S form a subset [*b] of the set [4b), which includes all the 
eigenstates required to build any collinear state, and has the finite-size scaling property 
characteristic of the existence of collinear long-range order in the thermodynamic limit. 

The purpose o f  this article is not to improve over the diagonalization results but to show 
that, for the J1-52 model with I /8  5 a 5 1, on samples of N = 4p sites with periodic 
boundary conditions, compatible with classical orders, one may accurately approximate both 
the states in the S = 0 singlet subspace (2b)s=o, which include the ground state and the 
other states of the singlet subspace (41?)~=o of [4b], by variationally optimizing singlet 
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Figure 1. Top: the four-sublattice classical ground state. The classid spins on the same 
sublattice are pmllel to each other with the sole constraint that the sum of four spins sited on 
different sublattices is zero. Bottom: one collinear classical ground state (in this case. classical 
spins in sublattices A and B are antiparallel). The two others have the ferromagnetic directions 
parallel to U? and U> respectively. 

trial states describing two-sublattice and four-sublattice ‘resonating-valence-bond’ (RVB) 
states. To this end, a class of two-sublattice RVB trial states, denoted I@*}, and several 
classes of four-sublattice RVB trial states, noted ]@a), which are computationally convenient, 
were investigated using Monte Carlo calculations. In what follows, we describe these trial 
states and then compare their energy and spin-spin correlation values with the exact results 
available for N = 12, 16,28 from [SI. The comparison shows that, when optimized, 
the 1@2} states have energy and spin-spin correlation values very close to those of the 
(nearly degenerate) eigenstates of {*%)S=O, whereas similar agreement is found between the 
properties of certain 1@4) states and those of the eigenstates of ( “ ~ } s _ o  not in {2%)s=o. 
Results obtained for N = 36, with the two-sublattice RVB trial state and a four-sublattice 
RVB trial state describing a tetrahedral state, are also reported. 

The two-sublattice I@*) trial states which were investigated are superpositions of 
valence-bond states Is), built from singlet bonds connecting opposite sublattices A and 
B (see figure I), weighted by the product w(B)  of the weights associated with individual 
bonds: 

l+z) = C w ( B ) I S )  (k) 
B 
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where the Ai (Bi) label the N j 2  A ( B )  sites, (ij) = 1tiJ.j - denotes a singlet 
bond between the two sites i and j .  the sum is over all permutations ,!I of the set 
i = {I, 2, . . . , N j 2 )  and h ( i ,  j )  is a real positive function of the distance between sites 
i and j whose values will be variationally determined. These trial states are similar to 
those considered previously for the Heisenberg antiferromagnet on the square lattice by 
Liang, Douqot. and Anderson 161 who found that using such a factorized form for the 
weights enables one to obtain an excellent variational energy for this model. We recall 
briefly some of their general properties. If h(i, j )  is constant V i. j ,  then 1$2) represents a 
classical collinear Nee1 state projected on the singlet subspace: the total spin on a sublattice 
is then a maximum, Sa = Ss = N / 4 ,  with (S, . Sj) = 1/4 if i and j are two different 
sites on the same sublattice and (Si . Sj) = -(1/4)(1 t 2 / N )  if i and j are on different 
sublattices. This state would be the ground state for a Hamiltonian with infinite-range 
antiferromagnetic coupling of the spins on the A and B sublattices, but is not energetically 
optimal if antiferromagnetic interactions are short ranged [7]. Then one expects to find the 
lowest energy for values of the h( i ,  j )  which decay with the distance. The optimum 
state will still display collinear long-range order in the thermodynamic limit (N + CO) 

provided that h decays sufficiently slowly. In this study, we did not attempt to confirm 
the existence of collinear order from variational calculations. In fact, since the amount of 
Nkel long-range order in I@*) depends on the long-range behaviour of h while the energy 
is mostly sensitive to the short-range part of h, one will presumably find ordered and 
disordered I$,) states very close in energy. A variational approach will not allow one to 
assess conclusively the amount of long-range order. 

The above approach generalizes to an n-sublattice structure [7, 81. The four-sublattice 
I@d) trial states we have considered are the superpositions of all the valence-bond states 
Ipy6) having the same numbers ndb. n,,, n,d, nbc ,  nbd ,  n d  of A B ,  AC, A D ,  BC, BD, 
C D  singlet bonds connecting the different sublattices A, B ,  C, D (see figure 1). Their 
weights w(Sy8)  are the products of the weights h( i ,  j )  of the individual bonds. Here too, 
the h ( i ,  j )  are functions of the distance between sites i and j and will be the variational 
parameters. These trial states read 

I@.+) = c W ( h ' 6 ) l f i V 6 )  (3a) 
By6 

I=I m=1 "4 

where the A,, B,, Ck, Dl label the sites of the A, B,  C, D sublattices respectively, while 
the Si, y,, 6 k  are elements of three whole sets of permutations of [ I .  2..  . . , N/4]: the 
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IpyS) are obtained by permuting the ends of the bonds on the same sublattice. Therefore, 
those states where h(i ,  j )  is constant have maximal values of the total spins on each of the 
sublattices, SA = SS = S, = S, = N / 8 .  since they are symmetric under the interchange 
of any two spins in a given sublattice, and are the RVB formulations of projections of a 
classical NCel state onto the singlet subspace, as iirst shown by Ma [7]. Every I@4) state 
relates to a projected four-sublattice Nee1 state, just like the 1@z) do to a projected collinear 
state, Here, however, one has several projected four-sublattice Nee1 states, one for each 
allowed set of values of the ngv (w ,  U = { U ,  b, c, d}). Note that the six numbers nFLv will be 
completely determined by the values of two of them since all sites are connected to a bond. 
This implies that nhd = nyc ,  n,d =nobr n.d = nhc = N / 4 - n , h - n , ,  with n,h+n,, < N / 4 .  
The different types of 1@4) state will later be specified via the values of nub and nor. As 
pointed out by Ma, two types of projected four-sublattice Ntel state can be easily pictured. 
One is the state where all n,, = N I 1 2  (note that N must then be an integer multiple of 12). 
Then (Si .S,) = - 1 / 3 2 - 2 / 3 N  between spins on any two different sublattices. This state is 
the projection of the classical Ntel state which has the spins on the four sublattices pointing 
in a tetrahedral configuration. The others, allowed for N = 4 p .  are those having only two 
non-zero n p y v  Cor instance n,h = ncd = N / 4 .  Then (Si . Sj) = -114 - 2 / N  if i E A and 
j E B or if i E C and j E D; otherwise (Si . S,) = 0 if i and j are on different sublattices. 
The associated classical Ntel states have the spins on the A ,  B sublattices antiparallel and 
the spins on the C, D sublattices antiparallel in a perpendicular direction, forming a cross. 
The energies of all the projected two-sublattice and four-sublattice Ntel states are equal: 
E4 = -(Jl/4)(l +a)(I + 8 / N )  per site. In the case of accidental degeneracy, (Y = 0.5 
for N = 12, a = 1 for N = 16, they are possible ground states. Othcrwise, the l@4) are 
energetically optimized with a function h decaying with the lengths of the bonds and will 
display N&I long-range order in the thermodynamic limit if h decays sufficiently slowly, 
like the 1 @ ~ )  states. 

trial states must also be noticed. 
First, for a given h function, there are three degenerate l@2)", states corresponding to the 
three possible ferromagnetic directions U , ,  zlz, US (see figure 1) on the triangular lattice 
and these states are non-orthogonal because of the non-orthogonality of the valence-bond 
states, although they are linearly independent: as I@z)"' # 1@2)"~ if i # j the 3 x 3 overlap 
matrix is non-singular Similarly, for a given h function, there are several degenerate non- 
orthogonal I@.,) states corresponding to the permutations of the three numbers nub, n,,, nod. 
except when all the n," are equal, i.e. for the 1@4)(n,h = n,, = N j 1 2 )  states derived from 
the classical tetrahedral N6el state. Yet, the I@4) states are non-orthogonal even if they are 
not related by a permutation of the ngu and the I@d) states may overlap with the 1@2)" 
states. With three I@2)", and all the possible 1@4)(nuhr nc) states, one has a number of 
different trial states which is larger than the dimension of (4E)s=o,  i.e. the number of linearly 
independent singlet states associated with a four-sublattice structure, which is 1 + N / 4  [5]. 
One has an overcomplete set of non-orthogonal trial states. Unlike the exact eigenstates, 
neither the 1@2)"' nor the I@4)(n,b, nac) states (except the I$r4)(n,h = n,, = N / 1 2 )  states) 
have a definite symmetry under the action of the space group. Obviously it would have 
been preferable to work with an orthogonalized set of trial states of definite symmetry which 
may be obtained from a superposition of the trial states having the mandatory properties 
undcr the space group symmetries, but for computational convenience we worked with the 
above trial states. Fortunately, this did not prevent a comparison with the exact results on 
thc small samples investigated-but if the exact eigenstates were not known, one would 
have to devise an orthogonalized set of trial states from group symmetry analysis. 

The values of the spin-spin correlation and the energies of the 192) and 1@4) states 

Several others features of the set of and 
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were computed using the Monte Carlo algorithm described in [6, 81 which consists in the 
sampling of pair of valence-bond states with a probability proportional to the product of 
their weights and the absolute value of their overlap. The method is very effective for the 
Iqz) states and for the states with almost four kinds of bond where the overlaps of 
every pair of valence-bond states are all positive (this is the advantage of the present trial 
states), but becomes time consuming on large samples for the states with six kinds of 
bond where the overlaps are then of both signs [SI. In the first case. this algorithm can deal 
with very large samples, even with the workstations we used, but in the second case, an 
alternative algorithm would have been required for samples larger than those studied here, 
focusing on the comparison with exact results available for N = 12, 16,28 at a = 0.7. 
Variational calculations were canid out with the lqz) states and with the I@4)  states with 
all possible sets of values of the nlrv for the N = 12 and N = 16 lattices and with the I@z) 
states for N = 28. On the N = 36 lattice we compare the states and the 1@4) states 
corresponding to the tetrahedral NBel state (all nllY equal). There is only one variational 
parameter for N = 12, 1 6  h(&), the value of the weight function for second-nearest- 
neighbour bonds at distance J? but three: h ( J ? ) ,  h ( z / j )  and h(3) for N = 28,36. 

Table 1. Energy values Ey of the optimized vial states investigated. I$z) and 1$4)(nd,, n,,), 
and those of the exact low-lying kth eigenslates Ek for lattices of N sites when 01 = J Z J J I  = 0.7. 
The exact ground state labelled 0 has the energy Eo. nk is the degeneracy of the eigemlate k. 
The numbers in brackets "e the estimated errors on the last digits of the variational energies 
E y .  The l$4) s t a m  with six types of bond (all nllv # 0) are indicated with an asterisk ( e ) .  
Among these, the I$p)(l, I )  and 1$4)(3, 3) for N = 12 md N = 36, respectively, derive from 
tetrahedral Nee1 states. 

N I$) E* k Ek nk 

-0.71881 (8) 0 -0.71949 2 r3 

12 l$4)(1, I)* -0.71437 (6) 

16 1$d -0.646 12 (16) 
16 1$4)(2.2) -0.64573 (IO) 
16 1$4)(3. I )  -0.64436 (IO) 
16 1$4)(4,0) -0.64323 (10) 
16 /$4)(2. I)* -0.64241 (13) 

28 lh) -0.631 17 (16) 
28 
28 
28 
28 

36 I h )  -0.61997 (IO) 
36 l$d)(3.3)* -0.58220 (179) 

2 -0.71339 I rz 

o -0.64635 I rl 
I -0.64582 2 r3 

2 -0.64222 2 r3 

o -0.63158 2 r3 
I -0.63157 I r ,  
2 -0.61883 I r l  
3 -0.61793 2 r3 
4 -0.61346 2 r3 

Results obtained at a = 0.7 for the energy values E* of the optimized trial states 
considered here, on samples of N = 12. 16,28,36 sites, are displayed in table 1 together 
with the energy values EX obtained by Lecheminant e t a l [ 5 ]  on samples with N = 12, 16.28 
sites, for the 1 + N/4 lowest-lying exact eigenstates. The spin-spin correlations So . S, 
between a spin at the origin and a spin in the rth shell of the exact eigenstates computed 
on samples of N = 12.16 sites are reported in table 2 together with the So. S, averaged 
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over the rth shell of the trial states. The authors of [SI have shown that these I + N / 4  
exact eigenstates form the set (4b]s=o of singlet states which enter into the construction 
of any four-sublattice Nee1 state, since they transform, under the operations of the space 
group of the triangular lattice, like the irreducible representations, P I ,  rz. rs, of the group 
Sq of pcrmutations of four elements, and the number of rl, r2, rs in this set is exactly 
the one that is mandatory for that. We recall that rL is the trivial representation, r2 is 
the one-dimensional representation that is even under a rotation Rbp of 2n/3 around an 
axis perpendicular to the plane of the lattice and odd in a reflection U, around the axis U], 
whereas the two-dimensional r3 is non-trivial under R&,l. The authors of 151 have also 
shown that within ["b]s=o the three states lowest in energy may be identified as the subset 
('k}s=o of singlet states associated with a collinear structure, since (2k}s=o should consist 
of one rl state and two degenerate r3 states. 

Table 2. Spin-spin correlations So. S, between a spin at the origin and a spin in the rlh shell 
in the lrial States I$i). l$4)(n,,h, vac) and in the cxad low.lying kth eigenstates for the N = 12 
and N = 16 latticcs when U = JzIJ, = 0.7. The variational values ue thc average values of 
lhe spin-spin conelations wilhin the rth shell. 

N I$) r S", s, k r So. S, 

12 1*2) I -0.11999(2) 0 I -0.11865 
2 -0.17086(2) 2 -0,173 I 1  
3 0.24128(2) 3 024063 

12 1$4)(2.1) I -0.12239(1) I 1 -0.12272 
2 -0.16727(1) 2 -0,16614 
3 0.24303(1) 3 0.24239 . .  

12 1$0)(3.0) I -0.12207(1) 
2 -0.167 IO(2) 
3 0.24187(2) 

12 I $ d ( l . I )  1 -0.12652(2) 
2 -0.15941(2) . .  
3 0.24370(2) 

16 I$i) 1 -0.141 990) 
2 -0.10482(4) 
3 0.24362(4) 

16 1$4)(2,2) I -0.141 060) 
2 -0.10598(3) 
3 0.24407(3) 

16 I$~a)(3, 1) I -0.13864(1) 
2 -0.10878(2) 

2 I -0,12804 
2 -0,15679 
3 0.24431 

0 1 -0,14298 
2 -0.10351 
3 0.24301 

I I -0.14172 
2 -0.10506 
3 0.24358 

. .  
3 0.24482(2) 

16 l$r)(4.0) I -0.13630(1) 
2 -0.1 I 1  600) 
3 0.24579(2) 

16 l$4)(2. I )  1 -0.13465(3) 2 I -0.13488 
2 -0.11353(3) 2 -0.113 13 
3 0.24638(3) 3 0.24602 

As seen in table 1. the energies of the 1@2) are always very close to the ground- 
state energies and smaller than the energies of the first excited states, i.e. between those 
of the FI, r? states of {'%]s=o which are close in energy. Besides, the SO . S, of the 
1@2) states are also close to those of the rl, rl states of ( 2 b ) ~ = ~  (see table 2). This 
suggests that the states in ('P],=, will very likely be well described with a superposition 
of the I @ z )  states with appropriate symmetry, like I@z)" + I@2)z)"2 + l@2)%% for the rl 
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state, + wl$z)"a where w = eiZlil3 
for the rs states. In all cases the I$4) states yield lower variational energies than the l$4) 

states. Slightly higher in energy above the I&) states one finds, however, the Iq4)(n,h, not) 
states with four kinds of bond, 1+4)(2, 1) for N = 12, 1$4)(2,2), 1$4)(3, 1) for N = 16. 
Their energy and spin-spin correlation values are also close to those of the TI, r3 states 
of (2&o (see tables 1 and 2), although closer to those of the first excited states. Thus, 
superpositions of these trial states with r,, r3 symmetry may also describe the states of 
(21?)s=o, but perhaps not as well as the states formed out of the 1$2) states. As seen in 
tables 1 and 2, it is the l$4)(nuh,nuc) states with six kinds of bond, Iq4)(l, 1) for N = 12, 
lllrq)(2, 1) for N = 16, which have energies and spin-spin correlations close to those of the 
eigenstates of (41?)s=0 not included in (21?]sa (which are well separated in energy from 
the states in (21?)s=o). In particular there is a good agreement for N = 12 between the 
values obtained for the l$4)(1, I )  state, which derive from a tetrahedral NCel state, and 
those of the r2 state. Here the trial state also has the same symmetry properties as the 
r2 state. This suggests that the rz states may be described with the tetrahedral 194) trial 
states if N is a multiple of 12 whereas, i f  N is not an integer multiple of 12, the states of 
(41?)s=0 not in (21?]s=~ will be well described by superposition of the l$4) states with six 
kinds of bond with appropriate symmetry. For N larger than 16, several states of (4&=0 
not in (21?)s=o have similar symmetry properties. The construction of an orthogonal set of 
Iq4) states will then be necessary. The variational energy of the tetrahedral state for 
N = 36 is reported in table 1 together with the energy of the 1$2) state. The variational 
values suggest that the two families of states may be even better separated in energy for 
N = 36 than for smaller samples. By contrast, the 1 q d )  states with two kinds of bond, 
1$4)(3, 0) for N = 12 and 1q4)(4, 0) for N = 16. have energies intermediate between those 
of the states in (21?]s=~ and the other eigenstates of (4i?]s=o, and spin-spin correlations 
somewhat different from those of these eigenstates. 

To summarize, the results presented here suggest that the singlet states (4j?)s=0 of the 
tower of states ( 4 1 ? )  which built any four-sublattice N6el state in the thermodynamic limit can 
be accurately described with simple RVB trial states with factorized weights. In particular, 
superposition of the RVB trial states 1$2) built in connecting two sublattices by singlet 
bonds may accurately describe the singlet states (21?)s=o of ("l?).~d which are associated 
with a collinear structure and among which one finds the ground state. On the other hand, 
the others states Idl?)s=0 not in ('l?)sd may be described starting from the four-sublattice 
1q4) trial states having six kinds of bond, with a tetrahedral [$A,) trial state for the r2 state 
or by superposition of the [$a) trial states in the case of the rl and rs states. This provides 
a picture of the (4j?)s=0 states. The results suggest also that one could, using a variational 
approach, corroborate the conclusion drawn in [ S ]  from exact diagonalizations on a small 
system that the collinear state is selected by quantum fluctuations for the J,-Jz model 
with 1/8 5 01 5 I .  The availability of good trial states is also important in calculations 
with stochastic projection methods, like the Green function Monte Carlo method, which 
enable one to obtain exact results on a large system, and the present trial states may be 
useful for this purpose, provided that one overcomes the well-known numerical difficulties 
encountered in such methods in the case of frustrated systems. 

+ w l $ ~ ) ~  + 021@2)"" and [$z)"' + 
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